Att lära sig resonera : Om elevers möjligheter att lära sig matematiska resonemang

Sammanfattning: Students only learn what they get the opportunity to learn. This means, for example, that students do not develop their reasoning- and problem solving competence unless teaching especially focuses on developing these competencies. Despite the fact that it has for the last 20 years been pointed out the need for a reform-oriented mathematics education, research still shows that in Sweden, as well as internationally, an over-emphasis are placed on rote learning and procedures, at the cost of promoting conceptual understanding. Mathematical understanding can be separated into procedural and conceptual understanding, where conceptual understanding can be connected to a reform oriented mathematics education. By developing a reasoning competence conceptual understanding can also be developed. This thesis, which deals with students’ opportunities to learn to reason mathematically, includes three studies (with data from Swedish upper secondary school, year ten and mathematics textbooks from twelve countries). These opportunities have been studied based on a textbook analysis and by studying students' work with textbook tasks during normal classroom work. Students’ opportunities to learn to reason mathematically have also been studied by examining the relationship between students' reasoning and their beliefs. An analytical framework (Lithner, 2008) has been used to categorise and analyse reasoning used in solving tasks and required to solve tasks.Results support previous research in that teaching and mathematics textbooks are not necessarily in harmony with reform-oriented mathematics teaching. And that students indicated beliefs of insecurity, personal- and subject expectations as well as intrinsic- and extrinsic motivation connects to not using mathematical reasoning when solving non-routine tasks. Most commonly students used other strategies than mathematical reasoning when solving textbook tasks. One common way to solve tasks was to be guided, in particular by another student. The results also showed that the students primarily worked with the simpler tasks in the textbook. These simpler tasks required mathematical reasoning more rarely than the more difficult tasks. The results also showed a negative relationship between a belief of insecurity and the use of mathematical reasoning. Furthermore, the results show that the distributions of tasks that require mathematical reasoning are relatively similar in the examined textbooks across five continents.Based on the results it is argued for a teaching based on sociomathematical norms that leads to an inquiry based teaching and textbooks that are more in harmony with a reform-oriented mathematics education.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)