The microdosimetric variance-covariance method used for beam quality characterization in radiation protection and radiation therapy

Detta är en avhandling från Stockholm : Medicinsk strålningsfysik (tills m KI)

Sammanfattning: Radiation quality is described by the RBE (relative biological effectiveness) that varies with the ionizing ability of the radiation. Microdosimetric quantities describe distributions of energy imparted to small volumes and can be related to RBE. This has made microdosimetry a powerful tool for radiation quality determinations in both radiation protection and radiation therapy. The variance-covariance method determines the dose-average of the distributions and has traditionally been used with two detectors to correct for beam intensity variations. Methods to separate dose components in mixed radiation fields and to correct for beam variations using only one detector have been developed in this thesis. Quality factor relations have been optimized for different neutron energies, and a new algorithm that takes single energy deposition events from densely ionizing radiation into account has been formulated. The variance-covariance technique and the new methodology have been shown to work well in the cosmic radiation field onboard aircraft, in the mixed photon and neutron fields in the nuclear industry and in pulsed fields around accelerators.The method has also been used for radiation quality characterization in therapy beams. The biological damage is related to track-structure and ionization clusters and requires descriptions of the energy depositions in nanometre sized volumes. It was shown that both measurements and Monte Carlo simulation (condensed history and track-structure) are needed for a reliable nanodosimetric beam characterization. The combined experimental and simulated results indicate that the dose-mean of the energy imparted to an object in the nanometre region is related to the clinical RBE in neutron, proton and photon beams. The results suggest that the variance-covariance technique and the dose-average of the microdosimetric quantities could be well suited for describing radiation quality also in therapy beams.