Stringed along or caught in a loop? : Philosophical reflections on modern quantum gravity research

Sammanfattning: A number of philosophical questions, all connected to modern research in quantum gravity, are discussed in this dissertation.The goal of research in quantum gravity is to find a quantum theory for gravitation; the other fundamental forces are already understood in terms of quantum physics. Quantum gravity is studied within a number of different research programmes. The most popular are string theory and loop quantum gravity; besides these a number of other approaches are pursued.Due to the lack of empirical support, it is relevant to assess the scientific status of this research. This is done from four different points of view, namely the ones held by: logical positivists, Popper, Kuhn and Lakatos. It is then argued that research in quantum gravity may be considered scientific, conditional on scientists being open with the tentative and speculative nature of their pursuits. Given the lack of empirical progress, in all approaches to quantum gravity, a pluralistic strategy is advised.In string theory there are different theoretical formulations, or dualities, which are physically equivalent. This is relevant for the problem of underdetermination of theories by data, and the debate on scientific realism. Different views on the dualities are possible. It is argued that a more empiricist view on the semantics of theories, than what has been popular lately, ought to be adopted. This is of importance for our understanding of what the theories tell us about space and time.In physics and philosophy, the idea that there are worlds or universes other than our own, has appeared in different contexts. It is discussed how we should understand these different suggestions; how they are similar and how they are different. A discussion on, how and when theoretical multiverse scenarios can be empirically testable, is also given.The reliability of thought experiments in physics in general and in quantum gravity in particular is evaluated. Thought experiments can be important for heuristic purposes, but in the case of quantum gravity, conclusions based on thoght experiments are not very reliable.