Redox Chemistry in Radiation Induced Dissolution of Spent Nuclear Fuel from Elementary Reactions to Predictive Modeling

Detta är en avhandling från Stockholm : KTH

Sammanfattning: The focus of this doctoral thesis is the redox chemistry involved in radiation induced oxidative dissolution of spent nuclear fuel and UO2 (as a model substance for spent nuclear fuel). It is shown that two electron oxidants are more efficient than one electron oxidants in oxidative dissolution of UO2 at low oxidant concentrations. Furthermore, it is shown that H2O2 is the only oxidant that has to be taken into account in radiation induced dissolution of UO2 under deep repository conditions (granite groundwater dominated by ?-radiolysis). Previously determined rate constants for oxidation of UO2 by H2O2 and O2, and rate constants for dissolution of U(VI) from the surface are successfully used to reproduce numerous UO2 dissolution rates reported in the literature. The impact of reactive solutes (Fe(II)(aq), 2-propanol and chloride) and Pd-inclusions (as a model for ?-particles) in combination with H2, on radiation induced oxidative dissolution of UO2 is investigated. It is shown that both the studied reactive solutes (under oxygen free conditions) and the combination of Pd inclusions and H2 inhibit the dissolution. Calculations (based on the fuel inventory) show that 1 µM Fe(II)(aq) decreases the dissolution rate by a factor of ~50 and that 1 ppm surface coverage of ?-particles is sufficient to completely stop the dissolution of 100 year old fuel (assuming 40 bar H2).The dissolution behavior of NpO2 and PuO2 in H2O2 containing aqueous solution without complexing agent is studied and compared to UO2. Based on the measured dissolution rates, we would not expect the dissolution of the actinides to be congruent. Instead, in a system without complexing agent, the rates Np and Pu are expected to be lower than the U release rate. The effect of ionizing irradiation on the UO2 reactivity is studied in order to elucidate the effect of self-irradiation on the reactivity of the spent fuel matrix. It is shown that a threshold dose must be achieved before any effect of irradiation can be seen. Beyond the threshold the reactivity seems to increase with increasing dose. Furthermore, the effect appears to be permanent. The effect of particle size on the reactivity of UO2 powder is studied in view of proposed theories suggesting a particle size dependence of both the pre-exponential factor and the activation energy for redox reactions. The rate constant and activation energy for oxidation of UO2 by MnO4- seems to agree with the proposed equations. The radiation chemical synthesis of UO2 nanoparticles is studied. It is shown that U(VI) released by dissolution of spent nuclear fuel could be reduced to UO2 nanoparticles.These particles could, due to their high reactivity towards H2O2, act as oxidant scavenger in a future deep repository for spent nuclear fuel.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)