Robust and Durable Vacuum Insulation Technology for Buildings

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: Today’s buildings are responsible for 40% of the world’s energy use and also a substantial share of the Global Warming Potential (GWP). In Sweden, about 21% of the energy use can be related to the heat losses through the climatic envelope. The “Million Program” (Swedish: Miljonprogrammet) is a common name for about one million housing units, erected between 1965 and 1974 and many of these buildings suffer from poor energy performance. An important aim of this study was to access the possibilities of using Vacuum Insulation Panels (VIPs) in buildings with emphasis on the use of VIPs for improving the thermal efficiency of the “Million Program” buildings. The VIPs have a thermal resistance of about 8-10 times better than conventional insulations and offer unique opportunities to reduce the thickness of the thermal insulation.This thesis is divided into three main subjects. The first subject aims to investigate new alternative VIP cores that may reduce the market price of VIPs. Three newly developed nanoporous silica were tested using different steady-state and transient methods. A new self-designed device, connected to a Transient Plane Source (TPS) instrument was used to determine the thermal conductivity of granular powders at different gaseous pressure combined with different mechanical loads. The conclusion was that the TPS technique is less suitable for conducting thermal conductivity measurements on low-density nanoporous silica powders. However, deviations in the results are minimal for densities above a limit at which the pure conduction becomes dominant compared to heat transfer by radiation.The second subject of this work was to propose a new and robust VIP mounting system, with minimized thermal bridges, for improving the thermal efficiency of the “Million Program” buildings. On the basis of the parametric analysis and dynamic simulations, a new VIP mounting system was proposed and evaluated through full scale measurements in a climatic chamber. The in situ measurements showed that the suggested new VIP technical solution, consisting of 20mm thick VIPs, can improve the thermal transmittance of the wall, up to a level of 56%. An improved thermal transmittance of the wall at centre-of-panel coordinate of 0.118 to 0.132 W m-2K-1 and a measured centre-of-panel thermal conductivity (λcentre-of-panel) of 7 mW m-1K-1 were reached. Furthermore, this thesis includes a new approach to measure the thermal bridge impacts due to the VIP joints and laminates, through conducting infrared thermography investigations. An effective thermal conductivity of 10.9 mW m-1K-1 was measured. The higher measured centre-of-panel and effective thermal conductivities than the published centre-of-panel thermal conductivity of 4.2 mW m-1K-1 from the VIP manufacturer, suggest that the real thermal performance of VIPs, when are mounted in construction, is comparatively worse than of the measured performance in the laboratory. An effective thermal conductivity of 10.9 mW m-1K-1 will, however, provide an excellent thermal performance to the construction.The third subject of this thesis aims to assess the environmental impacts of production and operation of VIP-insulated buildings, since there is a lack of life cycle analysis of whole buildings with vacuum panels. It was concluded that VIPs have a greater environmental impact than conventional insulation, in all categories except Ozone Depilation Potential. The VIPs have a measurable influence on the total Global Warming Potential and Primary Energy use of the buildings when both production and operation are taken into account. However, the environmental effect of using VIPs is positive when compared to the GWP of a standard building (a reduction of 6%) while the PE is increased by 20%. It was concluded that further promotion of VIPs will benefit from reduced energy use or alternative energy sources in the production of VIP cores while the use of alternative cores and recycling of VIP cores may also help reduce the environmental impact. Also, a sensitivity analysis of this study showed that the choice of VIPs has a significant effect on the environmental impacts, allowing for a reduction of the total PE of a building by 12% and the GWP can be reduced as much as 11% when considering both production and operation of 50 yes.Finally, it’s possible to conclude that the VIPs are very competitive alternative for insulating buildings from the Swedish “Million Program”. Nevertheless, further investigations require for minimizing the measurable environmental impacts that acquired in this LCA study for the VIP-insulated buildings.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)