Pests and pest controlling organisms across tropical agroecological landscapes in relation to forest and tree-cover

Detta är en avhandling från Stockholm : Department of Ecology, Environment and Plant Sciences, Stockholm University

Sammanfattning: A major challenge in agroecosystems is how to manage the systems so that it reduces crop pests and enhances natural pest control. This thesis investigates patterns of crop pests and top-down effects of birds and arthropod predators in relation to land-use composition across spatial scales. In paper (I) I examined the crop distribution and land-use types in relation to the crop raiding patterns in 15 transectsin sites close to and far from forests along with a questionnaire survey at household level. I found severe crop raiding close to forests, but it had no impact on crop composition growing between the two sites. In paper (II) I examined the effect of forest and tree cover, at local and landscape scales, on the abundance of arthropod predators by collecting specimens from 40 home gardens. My result showed higher abundance of arthropod predators when either the home garden or the surroundings had a high tree-cover, compared to when tree-cover at both scales was similarly either high or low. In paper (III) I investigated the effect of excluding birds and arthropod predators on leaf damage on rape seed in 26 home gardens. I found stronger top-down impacts from arthropod predators on crop pests in tree-poor gardens than in tree-rich gardens. There was no effect of birds. In paper (IV) I explored the effect of landscape complexity on bird and arthropod predation using plasticine caterpillars in 36 home gardens across landscapes. The rate of arthropod predation on caterpillars was higher in simple than in complex landscapes. The rate of bird predation did not vary between complex and simple landscapes. In simple landscapes, arthropod predation was higher than that of birds. The overall results suggest that simplified gardens/landscapes still have enough habitat heterogeneity to support arthropod predators for the significant top-down controlling effect on crop pests. However, I did not find clear effect of complexityon the top-down effect of birds.