Biopolymers and materials from rapeseed straw biorefining

Sammanfattning: Rapeseed straw was fractionated through a hydrothermal process into its hemicellulose, lignin and cellulose components. In the first step, hemicellulose-rich fractions were extracted. Xylan-rich fractions with high molecular weight, 30,000 – 50,000 g/mol, were obtained at 110 °C and 1.5 M NaOH. Neutral and acidic conditions yielded extract rich in glucomannan with co-extracted xylan and lignin.After hemicellulose extraction, the straw was subjected to a soda cooking step where the straw was delignified and lignin solubilized. Two cooking times were evaluated in this step. A longer cooking time resulted in a lignin-rich precipitate and a cellulose pulp with a lower content of lignin compared with the shorter cooking time. Analysis showed rapeseed straw lignin consists of syringyl and guaiacyl aromatic structures. Peroxide bleaching of the pulp decreased the lignin content in the cellulose pulp further. Cellulose nanoparticles (CNF and CNC) were isolated from the bleached pulp. The CNF fraction was heterogenous in size while the CNC fraction was more homogenous in size with rod like aspects. Both were highly crystalline, with good thermal stability and high aspect ratio.Thin free-standing films of xylan were cast from water solution with mechanical integrity and very high strain-at-break > 80% even without added plasticizer.A surface modification process was developed where xylan was first pre-activated in alkali. This was followed by an etherification coupling reaction with glycidyl methacrylate and subsequently grafted by interfacial free radical graft polymerization with octadecyl acrylate chains. The resulting grafted xylan became hydrophobic and gained a thermoplastic behavior. It was blended with PCL matrix via melt-extrusion. The grafted xylan was homogeneously distributed within the biocomposite and the PCL matrix was reinforced while at the same time preserving the ability to elongate to tensile strains > 500%. Analogous biocomposites with unmodified xylan in a PCL matrix resulted in heterogenous mixtures and brittle tensile properties.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)