Some matters of great balance

Sammanfattning: This thesis is based on four papers dealing with two different areas of mathematics.Paper I–III are in combinatorics, while Paper IV is in mathematical physics.In combinatorics, we work with design theory, one of whose applications aredesigning statistical experiments. Specifically, we are interested in symmetric incompleteblock designs (SBIBDs) and triple arrays and also the relationship betweenthese two types of designs.In Paper I, we investigate when a triple array can be balanced for intersectionwhich in the canonical case is equivalent to the inner design of the correspondingsymmetric balanced incomplete block design (SBIBD) being balanced. For this we derivenew existence criteria, and in particular we prove that the residual designof the related SBIBD must be quasi-symmetric, and give necessary and sufficientconditions on the intersection numbers. We also address the question of whenthe inner design is balanced with respect to every block of the SBIBD. We showthat such SBIBDs must possess the quasi-3 property, and we answer the existencequestion for all know classes of these designs.As triple arrays balanced for intersections seem to be very rare, it is natural toask if there are any other families of row-column designs with this property. In PaperII we give necessary and sufficient conditions for balanced grids to be balancedfor intersection and prove that all designs in an infinite family of binary pseudo-Youden designs are balanced for intersection.Existence of triple arrays is an open question. There is one construction of aninfinite, but special family called Paley triple arrays, and one general method forwhich one of the steps is unproved. In Paper III we investigate a third constructionmethod starting from Youden squares. This method was suggested in the literaturea long time ago, but was proven not to work by a counterexample. We show interalia that Youden squares from projective planes can never give a triple array bythis method, but that for every triple array corresponding to a biplane, there is asuitable Youden square for which the method works. Also, we construct the familyof Paley triple arrays by this method.In mathematical physics we work with solitons, which in nature can be seen asself-reinforcing waves acting like particles, and in mathematics as solutions of certainnon-linear differential equations. In Paper IV we study the non-commutativeversion of the two-dimensional Toda lattice for which we construct a family ofsolutions, and derive explicit solution formulas.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)