A lumped element transformer model including core losses and winding impedances

Sammanfattning: In order to design a power transformer it is important to understand its internal electromagnetic behaviour. That can be obtained by measurements on physical transformers, analytical expressions and computer simulations. One benefit with simulations is that the transformer can be studied before it is built physically and that the consequences of changing dimensions and parameters easily can be tested. In this thesis a time-domain transformer model is presented. The model includes core losses as magnetic static hysteresis, eddy current and excess eddy current losses. Moreover, the model comprises winding losses including eddy currents, capacitive effects and leakage flux. The core and windings are first modelled separately and then connected together in a total transformer model. This results in a detailed transformer model. One important result of the thesis is the possibility to simulate dynamic hysteresis including the eddy current shielding in the magnetic core material. This is achieved by using Cauer circuit combined with analytical expression for static and dynamic hysteresis. Thereby, all magnetic loss components in the material can be simulated accurately. This dynamic hysteresis model is verified through experiments showing very good agreement.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)