An Analysis of Consequences of Land Evaluation and Path Optimization

Sammanfattning: Planners who are involved in locational decision making often use raster-based geographic information systems (GIS) to quantify the value of land in terms of suitability or cost for a certain use. From a computational point of view, this process can be seen as a transformation of one or more sets of values associated with a grid of cells into another set of such values through a function reflecting one or more criteria. While it is generally anticipated that different transformations lead to different ‘best’ locations, little has been known on how such differences arise (or do not arise). Examples of such spatial decision problems can be easily found in the literature and many of them concern the selection of a set of cells (to which the land use under consideration is allocated) from a raster surface of suitability or cost depending on context. To facilitate GIS’s algorithmic approach, it is often assumed that the quality of the set of cells can be evaluated as a whole by the sum of their cell values. The validity of this assumption must be questioned, however, if those values are measured on a scale that does not permit arithmetic operations. Ordinal scale of measurement in Stevens’s typology is one such example. A question naturally arises: is there a more mathematically sound and consistent approach to evaluating the quality of a path when the quality of each cell of the given grid is measured on an ordinal scale? The thesis attempts to answer the questions highlighted above in the context of path planning through a series of computational experiments using a number of random landscape grids with a variety of spatial and non-spatial structures. In the first set of experiments, we generated least-cost paths on a number of cost grids transformed from the landscape grids using a variety of transformation parameters and analyzed the locations and (weighted) lengths of those paths. Results show that the same pair of terminal cells may well be connected by different least-cost paths on different cost grids though derived from the same landscape grid and that the variation among those paths is affected by how given values are distributed in the landscape grid as well as by how derived values are distributed in the cost grids. Most significantly, the variation tends to be smaller when the landscape grid contains more distinct patches of cells potentially attracting or distracting cost-saving passage or when the cost grid contains a smaller number of low-cost cells. The second set of experiments aims to compare two optimization models, minisum and minimax (or maximin) path models, which aggregate the values of the cells associated with a path using the sum function and the maximum (or minimum) function, respectively. Results suggest that the minisum path model is effective if the path search can be translated into the conventional least-cost path problem, which aims to find a path with the minimum cost-weighted length between two terminuses on a ratio-scaled raster cost surface, but the minimax (or maximin) path model is mathematically sounder if the cost values are measured on an ordinal scale and practically useful if the problem is concerned not with the minimization of cost but with the maximization of some desirable condition such as suitability.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)