Numerical Methods for Aeroacoustic Analysis of Turbomachines

Sammanfattning: Numerical simulations are important tools for developing new aircraft that can meet future needs. When numerical simulations are used to compute aircraft noise, a two-step procedure is often employed. In the first step, the noise sources are determined using, e.g., computational fluid dynamics. In the second step, noise propagation between the sources and the observers is then computed, often by solving an acoustic analogy. In this thesis, a range of numerical methods that are useful when turbomachinery tonal noise is computed based on such a two-step procedure are considered. For the first step, the time-domain Harmonic Balance method proposed by Hall et al. is used. To improve the accuracy of this method, the impact of time sampling on aliasing is investigated for both the single frequency and the multiple frequency problem. A new oversampling strategy for the multiple frequency problem is also developed for this purpose. Another challenge associated with the Harmonic Balance method is numerical instabilities. This problem is investigated using a von Neumann stability analysis. Based on knowledge gained from this analysis, a novel preconditioner that stabilizes an explicit Harmonic Balance solver is then developed. To minimize reflections of waves against boundaries of the computational domain, a generic formulation of the exact, nonlocal, nonreflecting boundary condition introduced by Giles is also derived and implemented to work with the Harmonic Balance method. For the second step, the convective Ffowcs Williams - Hawkings equation for permeable surfaces proposed by Najafi-Yazidi et al. is used. A detailed derivation of this equation is first presented. The solution to this equation for the case when the surface is stationary relative to the observer is then derived. Finally, a tool for computing duct modes based on a normal mode analysis of the linearized Euler equations is presented. In summary, the work reported in this thesis provides a detailed analysis of the aforementioned methods, that should be valuable for people who are interested in adopting them. It also provides some improvements, which can help to further improve the results obtained with these methods.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)