Input Calibration, Code Validation and Surrogate Model Development for Analysis of Two-phase Circulation Instability and Core Relocation Phenomena

Detta är en avhandling från Stockholm : Kungliga Tekniska högskolan

Sammanfattning: Code validation and uncertainty quantification are important tasks in nuclear reactor safety analysis. Code users have to deal with large number of uncertain parameters, complex multi-physics, multi-dimensional and multi-scale phenomena. In order to make results of analysis more robust, it is important to develop and employ procedures for guiding user choices in quantification of the uncertainties. The work aims to further develop approaches and procedures for system analysis code validation and application to practical problems of safety analysis. The work is divided into two parts. The first part presents validation of two reactor system thermal-hydraulic (STH) codes RELAP5 and TRACE for prediction of two-phase circulation flow instability. The goals of the first part are to: (a) develop and apply efficient methods for input calibration and STH code validation against unsteady flow experiments with two-phase circulation flow instability, and (b) examine the codes capability to predict instantaneous thermal hydraulic parameters and flow regimes during the transients. Two approaches have been developed: a non-automated procedure based on separate treatment of uncertain input parameters (UIPs) and an automated method using genetic algorithm. Multiple measured parameters and system response quantities (SRQs) are employed in both calibration of uncertain parameters in the code input deck and validation of RELAP5 and TRACE codes. The effect of improvement in RELAP5 flow regime identification on code prediction of thermal-hydraulic parameters has been studied. Result of the code validations demonstrates that RELAP5 and TRACE can reproduce qualitative behaviour of two-phase flow instability. However, both codes misidentified instantaneous flow regimes, and it was not possible to predict simultaneously experimental values of oscillation period and maximum inlet flow rate. The outcome suggests importance of simultaneous consideration of multiple SRQs and different test regimes for quantitative code validation. The second part of this work addresses core degradation and relocation to the lower head of a boiling water reactor (BWR). Properties of the debris in the lower head provide initial conditions for vessel failure, melt release and ex-vessel accident progression. The goals of the second part are to: (a) obtain a representative database of MELCOR solutions for characteristics of debris in the reactor lower plenum for different accident scenarios, and (b) develop a computationally efficient surrogate model (SM) that can be used in extensive uncertainty analysis for prediction of the debris bed characteristics. MELCOR code coupled with genetic algorithm, random and grid sampling methods was used to generate a database of the full model solutions and to investigate in-vessel corium debris relocation in a Nordic BWR. Artificial neural networks (ANNs) with classification (grouping) of scenarios have been used for development of the SM in order to address the issue of chaotic response of the full model especially in the transition region. The core relocation analysis shows that there are two main groups of scenarios: with relatively small (<20 tons) and large (>100 tons) amounts of total relocated debris in the reactor lower plenum. The domains are separated by transition regions, in which small variation of the input can result in large changes in the final mass of debris.  SMs using multiple ANNs with/without weighting between different groups effectively filter out the noise and provide a better prediction of the output cumulative distribution function, but increase the mean squared error compared to a single ANN.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)