Soil and stream water chemistry in a boreal catchment - interactions, influences of dissolved organic matter and effects of wood ash application

Sammanfattning: Two small bordering catchments in Bispgården, Central Sweden, wereinvestigated in regard to soil solution and stream water chemistry during the frostfree seasons of 2003-2007. Both catchments were drained by first order streams,Fanbergsbäcken and Gråbergsbäcken, and in Fanbergsbäckens catchment anextensive investigation of the soil and soil solution chemistry was conducted bylysimeter and centrifugation sampling. The area of intensive soil solutioninvestigation was situated in a slope towards a stream incorporating a rechargearea, with podzolic soil, and a discharge area close to the stream with an arenosolsoil. Samples were continuously taken in both the recharge- and the discharge areaof the slope, and stream water was sampled in the streams of both catchments. Themain variables of interest of the study were the interactions, the influence ofdissolved organic carbon and the effects of wood ash application to soil solutionand stream water.The natural variations and the interactions between soil solution and streamwater were monitored during 2003-2004. In soil solution, most of the investigatedsubstances tended to increase during the growing season, due to weathering andmicrobial degradation of biota. Ca, Mg, Al and Fe were highly associated todissolved organic carbon (DOC) throughout the catchment. The low molecularfraction of DOC seemed to have a higher impact on the soil processes in therecharge area, while high molecular DOC was more important for transport ofcations in the discharge area and the stream water.The concentration of different substances in the two streams differedsignificantly, even though the catchments were similar in size, shape andforestation. The seasonal patterns of most of the substances measured weresignificantly correlated between the streams, however. Cations and pH correlatedwell with DOC and flow. The flow pattern driven by precipitation seems to be thedriver of the stream water chemistry.Wood ash was applied at a dosage of 3 ton/ha to one of the catchments in theautumn of 2004, to investigate the initial effects on the soil solution- and streamwater chemistry. WAA is recommended by the Swedish Forest Agency tocounteract acidification in soil and runoff that may be caused by an intensivebiomass harvesting. The impact of the WAA was studied during 2005-2006.Compared to the control temporarily higher concentrations of K, Ca and SO4 wereobserved in the soil solution of the ashed area. In the stream water the effects of theWAA were easier to distinguish due to higher sampling frequency. The strongesteffect was seen for K, but increases in the stream water were also noted for DOC,Ca, Mg, Si, Cl and malonate. No increase in pH could be statistically verifiedhowever, and overall the initial effects of the WAA seem mild.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)