Adaptive Active Control of Machine-Tool Vibration in a Lathe - Analysis and Experiments

Detta är en avhandling från Division of Production and Materials Engineering, Lund University

Sammanfattning: In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and in particular, the surface finish. Tool life is also influenced by vibration. Noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. The research study includes the analysis of the statistical and dynamic properties of tool vibration in external turning, a foundation in optimal and adaptive signal processing that enables the active control of tool vibration in a lathe. It was found that the adaptive feedback control enables a broad-band attenuation of the tool vibrations, and is able to reduce the vibration level by almost 40 dB simultaneously at 1.5 kHz and 3 kHz. Further, the adaptive control reduced the acoustic noise level and it enabled a broad-band attenuation of the sound pressure in the frequency band 1.5 kHz to 25 kHz, with up to approximately 35 dB sound pressure level at 3 kHz. A significant improvement in the workpiece surface was also observed with the adaptive control.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.