Lubrication and Surface Properties of Adsorbed Layers of Polyelectrolytes and Proteins

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Friction forces between protein / polyelectrolyte layers, adsorption properties of proteins, and conformational changes due to variation in electrolyte concentration have been investigated. The aim was to obtain better understanding of adsorbed layer properties, with focus on the relation between layer structure and lubrication capabilities. The major techniques used were AFM (atomic force microscope) with colloidal probe for normal force and friction measurements together with QCM-D (quartz crystal microbalance with dissipation) for measurement of adsorption and conformational changes of adsorbed layers.A comparison between some techniques for calibration of the AFM instrument for friction measurements was made to find the most suitably one for colloidal probe friction measurements in aqueous solutions. It is suggested that the normal and torsional Sader methods are preferred in combination with torsional detector sensitivity measurement, for which one new methodology has been proposed.Adsorption was studied for bovine serum albumin, cytochrome c, myoglobin and mucin, whereas conformational changes of the adsorbed layer were monitored only for mucin. It was found that it was essential to take into account bulk density and viscosity changes for correct interpretations of QCM data when studying the effect of changes in electrolyte type and concentration on preadsorbed layers of mucin, and also when having different (high) concentrations of proteins in the measuring solution. The adsorbed amount of proteins appears to depend on the strength of the surface attachment, in such a manner that a too high affinity reduces the adsorbed amount.Friction properties in aqueous solution have been studied for adsorbed layers of PEO45MEMA:METAC co-polyelectrolytes, with varying density of grafted PEO45 side chains and varying charge density, as well as for a naturally occurring polyelectrolyte (chitosan) and the glycoprotein mucin. These polymers were used to cover a wide range of different types of adsorbed layers and interactions to gain a better understanding of friction mechanisms and demands on layer properties for achieving favourable lubrication. It was found that the common features of low friction layers are that no attractive forces are present, and that excluded volume and / or electrostatic forces counteract chain interpenetration under load.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)