Experimental investigation of snow metamorphism at near-surface layers

Sammanfattning: Snow metamorphism is a direct objective in many snow research areas, and its charac-terisation is a major challenge in areas including winter road maintenance, detection of icing on wind turbine blades, and snow quality mapping for skiing. A common effect of snow metamorphism is compaction, which can be investigated from the associated vari-ations in physical properties of snow. While the relation between snow metamorphism and physical properties of snow is fairly well-known, a method to quantify this relationis not extensively researched. This experimental based thesis focuses on the relationship between the physical properties of snow and its degree of metamorphism. The link isestablished and investigated by quantifying near-infrared (NIR) reflectance measure-ments and analysing the microtomographic data. Three experimental approaches are developed to record the NIR reflectance measurements and to understand the influence of compaction at near-surface layers of a snowpack. In addition, an X-ray microtomogra-phy (micro-CT) system is used to visualise the behaviour of snow microstructure during compaction. In this thesis, snow experienced compaction via aging, the melting-freezing process, uniaxial loading, settling and infiltration of liquid water.A numerical tool based on the well-established Discrete Ordinates Radiative Trans-fer (DISORT) method is used to solve the radiative transfer equation (RTE) for aplane-parallel and semi-infinite snowpack. The numerical solver takes the reflectance measurements as input and returns the coefficients of a first order Legendre phase function of an investigated snowpack at a given wavelength of light. The results from the solver show consistency and strong correlation between the Legendre coefficient sand the physical properties of snow. Furthermore, the physical properties of snow such as specific surface area (SSA) and liquid water content (LWC) were estimated via parameterisation where the reflectance data is used as input. The results suggest that the parameterisation of LWC can provide a qualitative estimate of the LWC in a snowpack, while the parameterisation of SSA provides a quantitative estimate of the snow SSA. As a next step, the influence of compaction on snow microstructure is investigated from three-dimensional (3D) images obtained using the micro-CT system. In this case, compaction is initiated by applying uniaxial load on a snow sample and the effect of compaction is analysed based on digital volume correlation (DVC) and porosity distribution. The micro-CT observations further emphasise that near-surface layers of a snowpack experience a higher degree of impact during compaction.In summary, this thesis presents experimental methods to quantify the link between snow compaction at near-surface layers, and the physical properties of snow. The mode observations show that the estimated Legendre coefficients can provide qualitative descriptions of snow grain distribution and surface texture. The parameterisation methods can provide the details about the LWC and the SSA of a snowpack. Further, the observations from the micro-CT study suggest that grains breakage and recrystallisation are the prevailing effects of snow compaction. All observations in this thesis are helpful in understanding the metamorphism in a snowpack for relevant research areas.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)