Metamodel-Based Design Optimization : A Multidisciplinary Approach for Automotive Structures

Sammanfattning: Automotive companies are exposed to tough competition and therefore strive to design better products in a cheaper and faster manner. This challenge requires continuous improvements of methods and tools, and simulation models are therefore used to evaluate every possible aspect of the product. Optimization has become increasingly popular, but its full potential is not yet utilized. The increased demand for accurate simulation results has led to detailed simulation models that often are computationally expensive to evaluate. Metamodel-based design optimization (MBDO) is an attractive approach to relieve the computational burden during optimization studies. Metamodels are approximations of the detailed simulation models that take little time to evaluate and they are therefore especially attractive when many evaluations are needed, as e.g. in multidisciplinary design optimization (MDO).In this thesis, state-of-the-art methods for metamodel-based design optimization are covered and different multidisciplinary design optimization methods are presented. An efficient MDO process for large-scale automotive structural applications is developed where aspects related to its implementation is considered. The process is described and demonstrated in a simple application example. It is found that the process is efficient, flexible, and suitable for common structural MDO applications within the automotive industry. Furthermore, it fits easily into an existing organization and product development process and improved designs can be obtained even when using metamodels with limited accuracy. It is therefore concluded that by incorporating the described metamodel-based MDO process into the product development, there is a potential for designing better products in a shorter time.