Islet Transplantation a Technical Challenge : Studies on Human Pancreas Preservation and Enzymatic Digestion

Sammanfattning: Islet transplantation has found its niche in diabetes treatment. It has contributed to a better quality of life and better glycemic control of patients with diabetes suffering from severe hypoglycemia that are not eligible for vascularized pancreas transplantation. Islet isolation is a technically challenging procedure. The different studies within this doctoral thesis aim to improve and standardize different steps in the isolation procedure. They are in particular looking to improve human pancreas preservation during cold storage, to optimize islet release from the exocrine tissue and to assess whether the isolated islet yield can be predicted from a biopsy. We found that pancreas preservation with pre-oxygenated perfluorodecalin (two-layer method) did not improve the ischemic tolerance of the human pancreas as compared to cold storage with the University of Wisconsin (UW) solution. Furthermore, in pancreas with long cold ischemia time (CIT) (>10 hours), Histidine-Tryptophan-Ketoglutarate (HTK) had a limited preservation capacity as compared with the UW solution with respect to isolation outcome. We also found that during enzymatic pancreas digestion, Vitacyte HA was able to provide a similar islet yield and quality as Serva NB1 with less collagenase activity and shorter digestion time. We further describe the first experience with a new GMP manufactured enzyme called Liberase MTF-S for successful human islet isolation. Finally, we found that the isolated islet yield could not be predicted from a biopsy taken from the head of the pancreas concerning solely morphological parameters of the islets tissue. The improvement of pancreas preservation will allow for marginal organs with prolonged cold ischemia time to expand the donor pool. Better knowledge of how the pancreatic extracellular matrix is digested by collagenase will lead to a fast and predictable islet release from the exocrine tissue. By standardizing the isolation procedure and improving organ selection we will increase the success rate in human islet isolation, thereby making islet transplantation available for more patients.