Combining Flexibility and Efficiency in Automotive Assembly : Preparing for New Powertrain Vehicles

Sammanfattning: Global warming and peak oil are drawing attention to new types of energy technologies. Since transportation is one of the main contributors to carbon emissions and one of the biggest consumers of oil, new technologies to propel vehicles are being introduced. For the automotive industry, where the Internal Combustion Engine (ICE) has had complete dominance for some hundred years, the transition to new powertrains will be challenging for the entire operation.These new powertrain vehicles must not only be developed and tested, which is an enormous challenge in itself; they must also be manufactured with the same efficiency as ICE vehicles in order to reach a competitive price. There is great uncertainty regarding which powertrain solution will become the next paradigm, or even if there will be a new propulsion paradigm as dominant as the ICE. This, in combination with the fact that these new powertrain vehicles will initially be produced in relatively small volumes, probably calls for them to be produced in current manufacturing facilities mixed with ICE vehicles. This challenge is the foundation for this research.In order to manage the manufacturing challenges related to the introduction of new powertrain vehicles, both theoretical and empirical data have been analysed in this research. The empirical data is taken mainly from interviews, the author’s own observations and workshops with Volvo Cars and SAAB Automobile.In order to produce new powertrain vehicles in existing facilities, flexibility are identified as central components in this research. However, the flexibility needs to be achieved without affecting the efficiency of the manufacturing system. To achieve flexible automotive final assembly, four key flexibilities are identified in this research:Mix FlexibilityNew Product FlexibilityModification FlexibilityVolume FlexibilityTo achieve these flexibilities, three key factors are identified and investigated in this research:Mixed ModelAssemblyModularityPlatform StrategyThis research describes these key factors’ relationship with one another, as well as their relationship to the key flexibilities. This research describes how the key factors are used to achieve flexibility in current final assembly, and how they can be used in future automotive final assembly. This is presented as a relationship model to combine flexibility and efficiency in automotive final assembly.A first step towards a stringent automotive product architecture-platform-vehicle structure is presented, along with key factors that are important in a successful automotive platform strategy. Guidelines are also described for how new powertrain vehicles should be designed in order to achieve as efficient final assembly as possible.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)