Tactile Perception Role of Friction and Texture

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: Tactile perception is considered an important contributor to the overall consumer experience of a product. However, what physical properties that create the specifics of tactile perception, are still not completely understood. This thesis has researched how many dimensions that are required to differentiate the surfaces perceptually, and then tried to explain these dimensions in terms of physical properties, by interconnecting human perception measurements with various physical measurements. The tactile perception was assessed by multidimensional scaling or magnitude estimation, in which methods human participants assign numbers to how similar pairs of surfaces are perceived or to the relative quantity of a specified perceptual attribute, such as softness, smoothness, coarseness and coolness. The role of friction and surface texture in tactile perception was investigated in particular detail, because typically tactile exploration involves moving (at least) one finger over a textured surface. A tactile approach for measuring friction was developed by means of moving a finger over the surfaces, mounted on a force sensor. The contribution of finger friction to tactile perception was investigated for surfaces of printing papers and tissue papers, as well as for model surfaces with controlled topography. The overarching research goal of this thesis was to study, systematically, the role of texture in tactile perception of surfaces.The model surfaces displayed a sinusoidal texture with a characteristic wavelength and amplitude, fabricated by surface wrinkling and replica molding techniques. A library of surfaces was manufactured, ranging in wavelengths from 270 nm up to 100 µm and in amplitudes from 7 nm up to 6 µm. These surfaces were rigid and cleanable and could therefore be reused among the participants. To my knowledge, this is the first time in a psychophysical experiment, that the surface texture has been controlled over several orders of magnitude in length scale, without simultaneously changing other material properties of the stimuli.The finger friction coefficient was found to decrease with increasing aspect ratio (amplitude/wavelength) of the model surfaces and also with increasing average surface roughness of the printing papers. Analytical modeling of the finger’s interaction with the model surfaces shows how the friction coefficient increases with the real contact area, and that the friction mechanism is the same on both the nanoscale and microscale. The same interaction mechanism also explains the friction characteristics of tissue paper. Furthermore, it was found that the perceptions of smoothness, coarseness, coolness and dryness are satisfactorily related to the real contact area at the finger-surface interface. It is shown that it is possible to discern perceptually among both printing papers and tissue papers, and this differentiation is based on either two or three underlying dimensions. Rough/smooth and thin/thick were the two main dimensions of surface feel found for the printing papers, whereas friction and wavelength were strongly related to the perceptual cues employed in scaling the model surfaces. These experimental results support the duplex theory of texture perception, which holds that both a “spatial sense”; used to discriminate the roughest textures from the others, and a “vibration sense”; used to discriminate among the smoother textures, are involved. The perception of what is considered rough and smooth depends on the experimental stimulus context. It is concluded that friction is important for human differentiation of surface textures below about 10 µm in surface roughness, and for larger surface textures, friction is less important or can even be neglected.The finger friction experiments also allowed the following conclusions to be drawn: (i) The interindividual variation in friction coefficients is too large to allow direct comparison; however, the trends in relative friction coefficients for a group of participants are the same. (ii) Lipids are transferred to the test surface of study, and this lowers the friction. (iii) Many of the studies point to a characteristic frequency during sliding of about 30 Hz, which is both characteristic of the resonance frequency of skin and the expected frequency associated with the fingerprints. (iv) The applied load in surface interrogation is in fact regulated in response to the friction force.The limits in tactile perception were indirectly researched by similarity scaling experiments on the model surfaces. Wrinkle wavelengths of 760 nm and 870 nm could be discriminated from untextured reference surfaces, whereas 270 nm could not. The amplitude of the wrinkles so discriminated was approximately 10 nm, suggesting that nanotechnology may well have a role to play in haptics and tactile perception.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)