Realizing Low-Latency Internet Services via Low-Level Optimization of NFV Service Chains : Every nanosecond counts!

Sammanfattning: By virtue of the recent technological developments in cloud computing, more applications are deployed in a cloud. Among these modern cloud-based applications, some require bounded and predictable low-latency responses. However, the current cloud infrastructure is unsuitable as it cannot satisfy these requirements, due to many limitations in both hardware and software.This licentiate thesis describes attempts to reduce the latency of Internet services by carefully studying the currently available infrastructure, optimizing it, and improving its performance. The focus is to optimize the performance of network functions deployed on commodity hardware, known as network function virtualization (NFV). The performance of NFV is one of the major sources of latency for Internet services.The first contribution is related to optimizing the software. This project began by investigating the possibility of superoptimizing virtualized network functions(VNFs). This began with a literature review of available superoptimization techniques, then one of the state-of-the-art superoptimization tools was selected to analyze the crucial metrics affecting application performance. The result of our analysis demonstrated that having better cache metrics could potentially improve the performance of all applications.The second contribution of this thesis employs the results of the first part by taking a step toward optimizing cache performance of time-critical NFV service chains. By doing so, we reduced the tail latencies of such systems running at 100Gbps. This is an important achievement as it increases the probability of realizing bounded and predictable latency for Internet services.