Electrochromic Polymer Devices: Active-Matrix Displays and Switchable Polarizers

Detta är en avhandling från Institutionen för teknik och naturvetenskap

Sammanfattning: Major efforts have been spent during recent years in worldwide attempts to achieve an electronic paper technology; the common name for novel flexible displays utilizing substrates such as paper, plastics or thin metal sheets. Various kinds of technology are available that potentially will be used for an electronic paper, which differs from each other mainly with respect to the choice of active materials, substrates and manufacturing techniques. There are many applications for electronic paper technology, ranging from high-resolution displays used in electronic books to updateable large-area billboards. The latter suggests a novel electronic display function that could extend the utilization of cellulose-based paper, which is one of the most common materials ever produced by mankind, by using the paper as a thin and flexible carrier. The requirement for fast update speed in such large area applications would probably be a bit more relaxed compared to traditional display technologies, while low-power consumption and bi-stability are among the factors that should be further emphasized, together with the utilization of well-established printing techniques to enable low-cost manufacturing of the displays. The choice of active materials is therefore crucial in order to reach these objectives in reality and this paves the way for printable conjugated polymers with electrochromic properties. Chemical synthesis of these materials during the last decades has resulted in a vast variety of electrochromic polymers with custom-tailored functionality covering a broad range of optical absorption and electrical conductivities.This thesis review the studies done on the electrochemical switching of poly(3,4-ethylenedioxythiophene) (PEDOT). For this material both the electrical conductivity and the optical absorption is controlled by the oxidation state. Active matrix addressed displays that are printed on flexible substrates have been obtained by arranging electrochemical smart pixels, based on the combination of electrochemical transistors and electrochromic display cells, into cross-point matrices. The resulting polymer-based active-matrix displays are operated at low voltages and the same active material can be used in electrochemical transistors and conducting lines and in electrochromic display cells employing the electronic and the opto-electonic properties of the material, respectively. In addition to this, a switchable optical polarizer is briefly discussed. This is a device utilizing electrochromism of stretch-aligned polyaniline (PANI). The combination of two identical devices in a vertical architecture, orthogonally oriented with respect to each other, results in a filter in which the orientation of the polarized optical absorption is governed by the voltage polarity applied to the device.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)