Design of carbide-based nanocomposite coatings

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: In this thesis research on synthesis, microstructure and properties of carbide-based coatings is reported. These coatings are electrically conducting, and can be tailored for high hardness, low friction and wear, along with load-adaptive behaviour. Tailoring these properties is achieved by controlling the relative phase content of the material. Coatings have been synthesised by dc magnetron sputtering, and their structures have been characterised, mainly by X-ray photoelectron spectroscopy and X-ray diffraction.It has been shown that nanocomposites comprising of a nanocrystalline transition metal carbide (nc-MeCx, Me = Ti, Nb or V) and an amorphous carbon (a-C) matrix can result in low contact resistance in electrical contacts. Such materials also exhibit low friction and high resistance to wear, making them especially suitable for application in sliding contacts. The lowest contact resistance is attained for small amounts of the amorphous carbon phase.It has been shown that specific bonding structures are present in the interface between nc-TiCx and the a-C phases in the nanocomposite.  It was found in particular that Ti3d and C2p states are involved, and that considerable charge transfer occurs across the interface, thereby influencing the structure of the carbide.Further design possibilities were demonstrated for TiCx-based nanocomposites by alloying them with weakly carbide-forming metals, i.e., Me = Ni, Cu or Pt.  Metastable supersaturated solid solution carbides, (T1-xMex)Cy, were identified to result from this alloying process. The destabilisation of the TiCx-phase leads to changes in the phase distribution in the deposited nanocomposites, thus providing further control over the amount of carbon phase formed. Additional design possibilities became available through the decomposition of the metastable (Ti1-xMex)Cy phase through an appropriate choice of annealing conditions, yielding either more carbon phase or a new metallic phase involving Me. This alloying concept was also studied theoretically for all 3d transition metals using DFT techniques.It has also been demonstrated that Ar-ion etching (commonly used in the analysis of carbide based nanocomposites) can seriously influence the result of the analysis, especially for materials containing metastable phases. This implies that more sophisticated methods, or considerable care are needed in making these analyses, and that many of the earlier published results could well be in error.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)