Stability analysis and inertial regimes in complex  flows

Sammanfattning: In this work we rst study the non-Newtonian effects on the inertial instabilities in shear flows and second the inertial suspensions of finite size rigid particles by means of numerical simulations.In the first part, both inelastic (Carreau) and elastic models (Oldroyd-B and FENE-P) have been employed to examine the main features of the non-Newtonian fluids in several congurations; flow past a circular cylinder, in a lid-driven cavity and in a channel. In the framework of the linear stability analysis, modal, non-modal, energy and sensitivity analysis are used to determine the instability mechanisms of the non-Newtonian flows. Signicant modifications/alterations in the instability of the different flows have been observed under the action of the non-Newtonian effects. In general, shear-thinning/shear-thickening effects destabilize/stabilize the flow around the cylinder and in a lid driven cavity. Viscoelastic effects both stabilize and destabilize the channel flow depending on the ratio between the viscoelastic and flow time scales. The instability mechanism is just slightly modied in the cylinder flow whereas new instability mechanisms arise in the lid-driven cavity flow.In the second part, we employ Direct Numerical Simulation together with an Immersed Boundary Method to simulate the inertial suspensions of rigid spherical neutrally buoyant particles in a channel. A wide range of the bulk Reynolds numbers, 500

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)