On particles and slags in steel casting

Sammanfattning: Hadfield steel is widely accepted as one of the most important steel alloys utilized in industrial applications where high impact strength and wear resistance is required. Like in most metallic alloys used for component casting, the mechanical properties of Hadfield steel are directly connected with the microstructure of the material. It has been reported that Hadfield steel components with fine microstructure can present up to 30% increased strength and reduced risk of porosity formation during solidification when compared with their coarser microstructure counterparts.In the light-metal alloy and cast-iron industry, one of the most widely used methods for achieving refinement of the microstructure of the material is known as inoculation. As the name implies, inoculation is the practice ofadding selected compounds or alloying elements in a metal melt that have the ability to promote rapid grain nucleation during solidification. Even though it has been proved that inoculation is one of the most efficient methods for the refinement of a wide variety of metallic alloys, it has not yet gained adequate acceptance in the steel casting industry because researchers have not yet been able to identify proper inoculants for steel.The efficiency of the microstructural refinement when inoculating is influenced by several factors like the type of inoculant used and the processing conditions during melting, deoxidation, casting and heat treatment. Following proper deoxidation methods and application of tailored oxidic slags during melting could significantly promote the precipitation of desired inclusions that can act as potent nucleation sites for grains or as grain growth inhibitors.In any case, efficient inoculation is influenced by the complex interaction between the inoculant, the oxide slag, and the melt. The way this interaction happens is in many ways dictated by the chemical and thermophysical properties of the substances involved. Therefore, obtaining accurate values of basic thermophysical properties like viscosity and interfacial tension by improving current and utilizing novel measurement methods could significantly help in the effort of identifying and efficiently utilizing potent inoculants for austenitic steels.Considering the above, this work has a dual objective. The primary aim is to investigate if any of the by-products of deoxidation of Hadfield steel that remain in the material after solidification can act as potent inoculants by examining their qualitative and quantitative characteristics and their influence on the as-cast microstructure of the steel. The secondary aim is to acquire accurate values for oxide slag viscosity and slag-iron interfacial tension at high temperatures using different measurement methods and investigate how thermophysical properties are influenced by thermal and compositional conditions. This type of research is important because not only it can help to identify which substances are potent inoculants for austenitic steels but also pave the way for developing new or improving conventional deoxidation and inoculation processes with the ultimate goal of improving the cast component’s mechanical properties.The work is divided into 3 different stages. The first stage is dedicated to high-temperature oxide slag viscosity measurements. The viscosity of oxide slags with varying composition is measured in a wide temperature range utilizing the rotational bob and aerodynamic levitation methods. The systematic error is defined, and the compositional and thermodynamic dependence of viscosity is explained. In the second stage, the precipitation of particles in aluminum and titanium deoxidized Hadfield steel is investigated. The characteristics of particles, including type, size, morphology, composition, population, and sequence of precipitation are identified. The results are then compared against thermodynamic equilibrium calculations, a particle growth mathematical model is developed and the precipitation mechanism of each type of particle is described. Finally, in the third stage, the as-cast grain size of samples produced with varying deoxidation procedures is measured and the relationship between particle characteristics and grain size is determined. The particles are ranked according to their refining potency and compared to a ranking based on their disregistry with austenite.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)