Pre-biotic molecules and dynamics in the ionosphere of Titan a space weather station perspective

Detta är en avhandling från Department of Physics and Astronomy

Sammanfattning: Saturn’s largest moon Titan (2575 km radius) is the second largest in the Solar system. Titan is the only known moon with a fully developed nitrogen-rich atmosphere with ionosphere extending to ~2000 km altitude, hosting complex organic chemistry. One of the main scientific interests of Titan’s atmosphere and ionosphere is the striking similarity to current theories of those of Earth ~3.5 billion years ago. The Cassini spacecraft has been in orbit around Saturn since 2004 and carries a wide range of instruments for investigating Titan’s ionosphere, among them the Langmuir probe, a “space weather station”, manufactured and operated by the Swedish Institute of Space Physics, Uppsala.This thesis reviews the first half of the PhD project on the production of pre-biotic molecules in the atmosphere of Titan and early Earth, focusing on the ion densities and dynamics in Titan’s ionosphere derived from the in-situ measurements by the Cassini Langmuir probe.One of the main results is the detection of significant, up to ~2300 cm-3, charge densities of heavy (up to ~13000 amu) negative ions in Titan’s ionosphere below 1400 km altitude. On the nightside of the ionosphere at altitudes below 1200 km, the heavy negative ion charge densities are comparable to the positive ion densities and are in fact the main negative charge carrier, making this region of the ionosphere exhibit properties of dusty plasma. The overall trend is the exponential increasing of the negative ion charge densities towards lower altitudes.Another important result is the detection of ion drifts that between 880-1100 km altitudes in Titan’s ionosphere translate to neutral winds of 0.5-5.5 km/s. Ion drifts define three regions by altitude, the top layer (above ~1600 km altitude) where the ions are frozen into the background magnetic field, the dynamo region (1100 – 1600 km altitudes) where the ions are drifting in partly opposing directions due to ion-neutral collisions in the presence of the magnetic and electric fields and the bottom layer (below 1100 km altitude) of the ionosphere, where the ions are coupled to neutrals by collisions.