Heat shock proteins as vaccine adjuvants

Detta är en avhandling från Stockholm : Wenner-Grens institut för experimentell biologi

Sammanfattning: New efficient vaccines against infectious diseases are in demand. Some important factors impeding the vaccine development are the poor immunogenicity and the MHC restriction of the immune responses to a number of antigens. The use of novel vaccine adjuvants or carrier proteins, which are known to enhance the immunogenicity of the subunit antigens and provide T-cell help, can circumvent these problems. The potential of heat shock proteins (HSPs) to function as adjuvants when fused to or co-delivered with protein antigens, make them attractive vaccine candidates. In this thesis we have evaluated the potency of heat shock protein 70 (HSP70) as a possible vaccine adjuvant and studied the mechanisms behind the adjuvanticity.The first article aims to evaluate the carrier effect of glutathione-S-transferase (GST) on a malarial antigen EB200 that induces a MHC restricted response in mice. Immunization of CBA and C57BL/6 mice, high and low responders to EB200, respectively, with the GST-EB200 fusion protein elicited EB200 specific antibody responses in both strains of mice, which indicated that MHC restriction was broken in C57BL/6 mice. However, the antibody affinity and the magnitude of the response were lower in the C57BL/6 mice compared with that in CBA. To improve the response, the efficacy of various adjuvants like alum, HSP70 from Trypanosoma cruzi, and the adjuvant combination (HSP70 and cholera toxin) was evaluated. The results indicated that cholera toxin and HSP70 act synergistically and improve the immunogenicity of EB200 antigen by increasing the affinity and magnitude of the response.HSP belongs to a family of conserved molecules and the maximum homology lies on the N-terminal region of the protein, therefore there is a risk that use of a complete molecule would give rise to autoimmunity. Thus, in our second study we first evaluated the adjuvant effect of the less conserved portion of HSP70 derived from Plasmodium falciparum (Pf70C). We found that the Pf70C exhibited similar adjuvant properties as the whole molecule. We further analyzed the adjuvant potential of Pf70C against EB200 formulated as a chimeric DNA vaccine construct. These constructs alone failed to generate substantial levels of EB200 specific antibodies in mice. However, the DNA immunization efficiently primed the immune system. This was evident as the subsequent boosting with the corresponding recombinant fusion proteins Pf70C-EB200 elicited strong EB200 specific Th-1 antibody responses. In contrast, no such priming effect was observed for ex vivo IFN-? production, however stimulation with the Pf70C-EB200 fusion protein induced an enhanced secretion of IFN-? in vitro.During the infection process, the synthesis of bacterial HSP is up-regulated, which is known to sensitize T cells in the infected host. Since a high degree of homology exists within the phylogenetic families of HSPs, we postulated that exposure of mice to microorganisms could prime the immune system for evolutionary diverse HSPs and for any antigen coupled to them. We tested this hypothesis by priming mice with different microorganisms such as BCG, Mycobacterium vaccae or Chlamydia pneumoniae and boosted with a recombinant fusion protein Pf70C-EB200 or with a panel of HSPs. We found that BCG and M. vaccae but not C. pneumoniae could provide priming of the immune system to induce secondary IgG responses to Pf70C as well as to other HSPs tested. The priming effect was also observed when the EB200 antigen was coupled to Pf70C. Analysis of the IgG1 and IgG2a profiles and IFN-g production induced against the HSPs revealed a mixture of Th1/Th2 type of responses. We also observed that HSP70 specific sera cross-reacted some extent with certain autoreactive antigens. However, no deposits were observed in the kidneys of HSP treated animals.Finally, we investigated the role of TLR2 and TLR4 on HSP70-mediated adjuvanticity. We found that HSPs displayed different degrees of adjuvanticity regarding both the strength and the profile of the induced immune response. Also, they possessed different requirements for signaling through TLRs. While HSP70 from T. cruzi induced antigen-specific humoral responses in wild type as well as in both the TLR2 and TLR4 knockout mice, the response was diminished in the TLR4 knockout mice when both the whole and C-terminal fragment of HSP70 from Mycobacterium tuberculosis was used. However, the C-terminal fragment of P. falciparum HSP70 elicited responses only in wild type mice but not in TLR2 or TLR4 knockout mice indicating that the adjuvant function differ for phylogenetically related HSPs. Taken together our data suggest that HSPs can be promising candidates in future vaccines.