The expression and regulation of hyaluronan synthases and their role in glycosaminoglycan synthesis

Sammanfattning: The glycosaminoglycan hyaluronan is an essential component of the extracellular matrix in all higher organisms, affecting cellular processes such as migration, proliferation and differentiation. Hyaluronan is synthesized by a plasma membrane bound hyaluronan synthase (HAS) which exists in three genetic isoforms. This thesis focuses on the understanding of the hyaluronan biosynthesis by studies on the expression and regulation of the HAS proteins.In order to characterize the structural and functional properties of the HAS isoforms we developed a method to solubilize HAS protein(s) while retaining enzymatic activity. The partially purified HAS protein is, most likely, not asscociated covalently with other components. Cells transfected with cDNAs for HAS1, HAS2 and HAS3 were studied and all three HAS isozymes were able to synthesize high molecular weight hyaluronan chains in intact cells. The regulation of the hyaluronan chain length involves cell specific elements as well as external stimulatory factors. HAS3 transfected cells with high hyaluronan production exhibit reduced migration capacity and reduced amounts of a cell surface hyaluronan receptor molecule (CD44) compared to wild-type cells.The three HAS isoforms were studied and shown to be differentially expressed and regulated in response to external stimuli. Platelet derived growth factor (PDGF-BB) and transforming growth factor (TGF-β1) are important regulators of HAS at both the transcriptional and translational level. The HAS2 isoform is the isoform most susceptible to external regulation.The role of the UDP-glucose dehydrogenase in mammalian glycosaminoglycan biosynthesis was assessed. The enzyme is essential for hyaluronan, heparan sulfate and chondroitin sulfate biosynthesis, but does not exert a rate-limiting effect.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)