Bioaccessibility of Stainless Steels : Importance of Bulk and Surface Features

Detta är en avhandling från Stockholm : KTH

Sammanfattning: With increasing environmental awareness, the desire to protect human beings and the environment from adverse effects induced by dispersed metals has become an issue of great concern and interest. New policies, such as REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) within the European Community, have been implemented to reduce hazards posed by the use of chemicals on producers and downstream users. The generation of exposure assessment data and relevant test procedures able to simulate realistic scenarios are essential in such legislative actions.This doctoral study was initiated to fill knowledge gaps related to the metal release process of stainless steels. A wide range of stainless steel grades, fourteen in total, were investigated. They cover a very broad range of applications, and the focus in the thesis was to simulate a few selected exposure scenarios: precipitation, the human body and food intake. Comparisons were made between metal release from stainless steel alloys and the pure metals that constitute each stainless steel in order to explore the differences between alloys and pure metals, and to provide quantitative data on metal release rates of different alloy constituents. Because of similar surface properties between stainless steel and pure chromium, this metal exhibits similar release rates, whereas iron and nickel exhibit significantly lower release rates as alloy components than as pure metals. Detailed studies were also performed to elucidate possible relations between metal release and steel surface properties. Key parameters turned out to be chromium enrichment of the self-passivating surface film, surface roughness, the electrochemically active surface area and the microstructure of the steel substrate. The degree of metal release increased with decreasing chromium content in the surface oxide, increasing surface roughness, and increasing presence of inhomogeneities in the bulk matrix.More detailed studies were initiated to possibly correlate the nucleation of metastable pits and the extent of metal release. Evidence was given that metastable pits exist even when the stainless steel is passive, and may cause extremely short-lived bursts of released metal before the surface film repassivates again.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)