On High-Temperature Behaviours of Heat Resistant Austenitic Alloys

Detta är en avhandling från Linköping : Linköping University Electronic Press

Sammanfattning: Advanced heat resistant materials are important to achieve the transition to long term sustainable power generation. The global increase in energy consumption and the global warming from greenhouse gas emissions create the need for more sustainable power generation processes. Biomass-red power plants with higher eciency could generate more power but also reduce the emission of greenhouse gases, e.g. CO2. Biomass oers no net contribution of CO2 to the atmosphere. To obtain greater eciency of power plants, one option is to increase the temperature and the pressure in the boiler section of the power plant. This requires improved material properties, such as higher yield strength, creep strength and high-temperature corrosion resistance, as well as structural integrity and safety.Today, some austenitic stainless steels are design to withstand temperatures up to 650 C in tough environments. Nickel-based alloys are designed to withstand even higher temperatures. Austenitic stainless steels are more cost eective than nickel-based alloys due to a lower amount of expensive alloying elements. However, the performance of austenitic stainless steels at the elevated temperatures of future operation conditions in biomass-red power plants is not yet fully understood.This thesis presents research on the inuence of long term  high-temperature ageing on mechanical properties, the inuence of very slow deformation rates at high-temperature on deformation, damage and fracture, and the inuence of high-temperature environment and cyclic operation conditions on the material behaviour. Mechanical and thermal testing have been performed followed by subsequent studies of the microstructure, using scanning electron microscopy, to investigate the material behaviours.Results shows that long term ageing at high temperatures leads to the precipitation of intermetallic phases. These intermetallic phases are brittle at room temperature and become detrimental for the impact toughness of some of the austenitic stainless steels. During slow strain rate tensile deformation at elevated temperature time dependent deformation and recovery mechanisms are pronounced. The creepfatigue interaction behaviour of an austenitic stainless steel show that dwell time gives shorter life at a lower strain range, but has none or small eect on the life at a higher strain range.Finally, this research results in an increased knowledge of the structural, mechanical and chemical behaviour as well as a deeper understanding of the deformation, damage and fracture mechanisms that occur in heat resistant austenitic alloys at high-temperature environments. It is believed that in the long term, this can contribute to material development achieving the transition to more sustainable power generation in biomass-red power plants.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)