Processing and analysis of NMR data Impurity determination and metabolic profiling

Detta är en avhandling från Stockholm : Institutionen för analytisk kemi

Sammanfattning: This thesis describes the use of nuclear magnetic resonance (NMR) spectrometry as an analytical tool. The theory of NMR spectroscopy in general and quantitative NMR spectrometry (qNMR) in particular is described and the instrumental properties and parameter setups for qNMR measurements are discussed. Examples of qNMR are presented by impurity determination of pharmaceutical compounds and analysis of urine samples from rats fed with either water or a drug (metabolic profiling). The instrumental parameter setup of qNMR and traditional data pre-treatments are examined. Spectral smoothing by convolution with a triangular function, which is an unusual application in this context, was shown to be successful regarding the sensitivity and robustness of the method in paper II. In addition, papers III and IV comprise the field of peak alignment, especially designed for 1H-NMR spectra of urine samples. This is an important preprocessing tool when multivariate analysis is to be applied. A novel peak alignment method was developed and compared to the traditional bucketing approach and a conceptually different alignment method.Univariate, multivariate, linear and nonlinear data analyses were applied to qNMR data. In papers I–II, calibration models were created to examine the potential of qNMR for these applications. The data analysis in papers III–VI was mainly explorative. The potential of data fusion and data correlation was examined in order to increase the possibilities of analysing the highly complex samples from metabolic profiling (papers V–VI). Data from LC/MS analysis of the same samples were used with the 1H-NMR data in different ways. Correlation analyses between the 1H-NMR data and the drug metabolites identified from the LC/MS data were also performed. In this process, data fusion proved to be a valuable tool.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)