New ultrasonographic approaches to monitoring cardiac and vascular function

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Atherosclerotic cardiovascular disease is the leading cause of death worldwide. To decrease mortality and morbidity in cardiovascular disease, the development of accurate, non-invasive methods for early diagnosis of atherosclerotic cardiac and vascular engagement is of considerable clinical interest. Cardiovascular ultrasound imaging is today the cornerstone in the routine evaluation of cardiovascular function and recent development has resulted in two new techniques, tissue velocity imaging (TVI) and speckle tracking, which allow objective quantification of cardiovascular function. TVI and speckle tracking are the basis for three new approaches to cardiac and vascular monitoring presented in this thesis: wave intensity wall analysis (WIWA), two-dimensional strain imaging in the common carotid artery, and the state diagram of the heart. WIWA uses longitudinal and radial strain rate as input for calculations of wave intensity in the arterial wall. In this thesis, WIWA was validated against a commercially available wave intensity system, showing that speckle tracking-derived strain variables can be useful in wave intensity analysis. WIWA was further tested in patients with end stage renal disease and documented high mortality in cardiovascular disease. The latter study evaluated the effects of a single session of hemodialysis using WIWA and TVI variables and showed improved systolic function after hemodialysis. The results also indicated that preload-adjusted early systolic wave intensity obtained by the WIWA system may contribute in the assessment of left ventricular contractility in this patient category. Two-dimensional strain imaging in the common carotid artery is a new approach showing great potential to detect age-dependent differences in mechanical properties of the common carotid artery. Among the measured strain variables, global circumferential strain had the best discriminating performance and appeared to be superior to conventional measures of arterial stiffness such as elastic modulus and ? stiffness index. The state diagram is a visualisation tool that provides a quantitative overview of the temporal interrelationship of mechanical events in the left and right ventricles. Case examples and a small clinical study showed that state diagrams clearly visualize cardiac function and can be useful in the detection of non ST-elevation myocardial infarction (NSTEMI). Even though WIWA, two-dimensional strain imaging in the common carotid artery and the state diagram show potential to be useful in the evaluation of cardiovascular function, there still remains a considerable amount of work to be done before they can be used in the daily clinical practice.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)