Cosmological Models and Singularities in General Relativity

Sammanfattning: This is a thesis on general relativity. It analyzes dynamical properties of Einstein's field equations in cosmology and in the vicinity of spacetime singularities in a number of different situations. Different techniques are used depending on the particular problem under study; dynamical systems methods are applied to cosmological models with spatial homogeneity; Hamiltonian methods are used in connection with dynamical systems to find global monotone quantities determining the asymptotic states; Fuchsian methods are used to quantify the structure of singularities in spacetimes without symmetries. All these separate methods of analysis provide insights about different facets of the structure of the equations, while at the same time they show the relationships between those facets when the different methods are used to analyze overlapping areas.The thesis consists of two parts. Part I reviews the areas of mathematics and cosmology necessary to understand the material in part II, which consists of five papers. The first two of those papers uses dynamical systems methods to analyze the simplest possible homogeneous model with two tilted perfect fluids with a linear equation of state. The third paper investigates the past asymptotic dynamics of barotropic multi-fluid models that approach a `silent and local' space-like singularity to the past. The fourth paper uses Hamiltonian methods to derive new monotone functions for the tilted Bianchi type II model that can be used to completely characterize the future asymptotic states globally. The last paper proves that there exists a full set of solutions to Einstein's field equations coupled to an ultra-stiff perfect fluid that has an initial singularity that is very much like the singularity in Friedman models in a precisely defined way.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)