Flow control of boundary lagers and wakes

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Both experimental and theoretical studies have beenconsidered on flat plate boundary layers as well as on wakesbehind porous cylinders. The main thread in this work iscontrol, which is applied passively and actively on boundarylayers in order to inhibit or postpone transition toturbulence; and actively through the cylinder surface in orderto effect the wakecharacteristics.An experimental set-up for the generation of the asymptoticsuction boundary layer (ASBL) has been constructed. This studyis the first, ever, that report a boundary layer flow ofconstant boundary layer thickness over a distance of 2 metres.Experimental measurements in the evolution region, from theBlasius boundary layer (BBL) to the ASBL, as well as in theASBL are in excellent agreement with boundary layer analysis.The stability of the ASBL has experimentally been tested, bothto Tollmien-Schlichting waves as well as to free streamturbulence (FST), for relatively low Reynolds numbers (Re). For the former disturbances good agreement is foundfor the streamwise amplitude profiles and the phase velocitywhen compared with linear spatial stability theory. However,the energy decay factor predicted by theory is slightlyoverestimated compared to the experimental findings. The latterdisturbances are known to engender streamwise elongated regionsof high and low speeds of fluid, denoted streaks, in a BBL.This type of spanwise structures have been shown to appear inthe ASBL as well, with the same spanwise wavelength as in theBBL, despite the fact that the boundary layer thickness issubstantially reduced in the ASBL case. The spanwise wavenumberof the optimal perturbation in the ASBL has been calculated andis ? = 0.53, when normalized with the displacementthickness. The spanwise scale of the streaks decreases withincreasing turbulence intensity (Tu) and approaches the scale given by optimalperturbation theory. This has been shown for the BBL case aswell.The initial energy growth of FST induced disturbances hasexperimentally been found to grow linearly as Tu2Rexin the BBL, the transitional Reynolds numberto vary as Tu-2, and the intermittency function to have a relativelywell-defined distribution, valid for all Tu.The wake behind a porous cylinder subject to continuoussuction or blowing has been studied, where amongst other thingsthe Strouhal number (St) has been shown to increase strongly with suction,namely, up to 50% for a suction rate of 2.5% of the free streamvelocity. In contrast, blowing shows a decrease ofStof around 25% for a blowing rate of 5% of the freestream velocity in the considered Reynolds number range.Keywords:Laminar-turbulent transition, asymptoticsuction boundary layer, free stream turbulence,Tollmien-Schlichting wave, stability, flow control, cylinderwake.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)