Electrochemical Reactions in Polymer Electrolyte Fuel Cells

Detta är en avhandling från Stockholm : KTH

Sammanfattning: The polymer electrolyte fuel cell converts the chemical energy in a fuel, e.g. hydrogen or methanol, and oxygen into electrical energy. The high efficiency and the possibility to use fuel from renewable sources make them attractive as energy converters in future sustainable energy systems. Great progress has been made in the development of the PEFC during the last decade, but still improved lifetime as well as lowered cost is needed before a broad commercialization can be considered. The electrodes play an important role in this since the cost of platinum used as catalyst constitutes a large part of the total cost for the fuel cell. A large part of the degradation in performance can also be related to the degradation of the porous electrode and a decreased electrochemically active Pt surface.In this thesis, different fuel cell reactions, catalysts and support materials are investigated with the aim to investigate the possibility to improve the activity, stability and utilisation of platinum in the fuel cell electrodes.An exchange current density, i0, of 770 mA cm-2Pt was determined for the hydrogen oxidation reaction in the fuel cell with the model electrodes. This is higher than previously found in literature and implies that the kinetic losses on the anode are very small. The anode loading could therefore be reduced without imposing too high potential losses if good mass transport of hydrogen is ensured. It was also shown that the electrochemically active surface area, activity and stability of the electrode can be affected by the support material. An increased activity was observed at higher potentials for Pt deposited on tungsten oxide, which was related to the postponed oxide formation for Pt on WOx. An improved stability was seen for Pt deposited on tungsten oxide and on iridium oxide. A better Pt stability was also observed for Pt on a low surface non-graphitised support compared to a high surface graphitised support. Pt deposited on titanium and tungsten oxide, displayed an enhanced electrochemically active surface area in the cyclic voltammograms, which was explained by the good proton conductivity of the metal oxides. CO-stripping was shown to provide the most reliable measure of the electrochemically active surface area of the electrode in the fuel cell. It was also shown to be a useful tool in characterization of the degradation of the electrodes. In the study of oxidation of small organic compounds, the reaction was shown to be affected by the off transport of reactants and by the addition of chloride impurities. Pt and PtRu were affected differently, which enabled extraction of information about the reaction mechanisms and rate determining steps.The polymer electrolyte fuel cell converts the chemical energy in a fuel, e.g. hydrogen or methanol, and oxygen into electrical energy. The high efficiency and the possibility to use fuel from renewable sources make them attractive as energy converters in future sustainable energy systems. Great progress has been made in the development of the PEFC during the last decade, but still improved lifetime as well as lowered cost is needed before a broad commercialization can be considered. The electrodes play an important role in this since the cost of platinum used as catalyst constitutes a large part of the total cost for the fuel cell. A large part of the degradation in performance can also be related to the degradation of the porous electrode and a decreased electrochemically active Pt surface.In this thesis, different fuel cell reactions, catalysts and support materials are investigated with the aim to investigate the possibility to improve the activity, stability and utilisation of platinum in the fuel cell electrodes.An exchange current density, i0, of 770 mA cm-2Pt was determined for the hydrogen oxidation reaction in the fuel cell with the model electrodes. This is higher than previously found in literature and implies that the kinetic losses on the anode are very small. The anode loading could therefore be reduced without imposing too high potential losses if good mass transport of hydrogen is ensured. It was also shown that the electrochemically active surface area, activity and stability of the electrode can be affected by the support material. An increased activity was observed at higher potentials for Pt deposited on tungsten oxide, which was related to the postponed oxide formation for Pt on WOx. An improved stability was seen for Pt deposited on tungsten oxide and on iridium oxide. A better Pt stability was also observed for Pt on a low surface non-graphitised support compared to a high surface graphitised support. Pt deposited on titanium and tungsten oxide, displayed an enhanced electrochemically active surface area in the cyclic voltammograms, which was explained by the good proton conductivity of the metal oxides. CO-stripping was shown to provide the most reliable measure of the electrochemically active surface area of the electrode in the fuel cell. It was also shown to be a useful tool in characterization of the degradation of the electrodes. In the study of oxidation of small organic compounds, the reaction was shown to be affected by the off transport of reactants and by the addition of chloride impurities. Pt and PtRu were affected differently, which enabled extraction of information about the reaction mechanisms and rate determining steps.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)