Disentangling Lecania

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: This thesis focuses on phylogenetic, taxonomic, ecological, and conservation aspects of the crustose lichen genus Lecania (Ramalinaceae, lichenized Ascomycota). Lecania has previously been defined on basis of relatively few morphological characters, and the genus had never been treated in molecular phylogenies.The molecular phylogeny of the genus is inferred from DNA sequences. Twenty-five species traditionally placed in Lecania are included in the study along with 21 species from closely related genera. Lecania is a polyphyletic genus. A well-supported monophyletic group containing 16 Lecania species, including the type species L. fuscella is discovered, i.e. Lecania s. str. Nine species formerly included in Lecania do not belong in the genus. A new species, L. belgica, is described.The relationships of a group of morphologically similar Lecania species, i.e. the L. cyrtella group are investigated using morphological and molecular methods. Haplotype network and phylogenetic analyses indicate that the included species, as conceived in the morphological examinations, all are monophyletic. Two new species, L. leprosa and L. madida, are described, L. proteiformis is resurrected from synonymy, and the known range of L. prasinoides is greatly expanded.The type species Lecania fuscella has become endangered in many countries. Twelve localities in Sweden where the species had been found historically are investigated, but L. fuscella is only recovered in one locality. The species composition in these 12 localities, 58 old and 5 new collections with L. fuscella is determined and analyzed. The vegetation community differs between the old and the new collections, and between the locality where the species is recovered and those where it is not. Lecania fuscella has not been able to adapt to environmental changes and now only appears in a specific type of vegetation community. The phylogenetic diversity of the species is calculated, but does not reflect the species’ evolutionary potential.