Studies on Metalloenzymatic Dynamic Kinetic Resolutions and Iron-Catalyzed Reactions of Allenes

Sammanfattning: The main focus of this thesis lies in the development of new transition metal-catalyzed chemoenzymatic dynamic kinetic resolutions (DKR) of both alcohols and amines. The first part of the thesis deals with the development of new heterogeneous systems for the DKR of amines. The racemization catalysts in these different systems are all composed of palladium nanoparticles supported on either mesoporous silica or incorporated in a biocomposite that is composed of a bioactive cross-linked enzyme aggregate. The second part of the thesis deals with the development of a homogeneous iron catalyst in the racemization of sec-alcohols for the implementation in a chemoenzymatic DKR. Two protocols for the racemization of sec-alcohols are reported. The first one could not be combined with a chemoenzymatic kinetic resolution, although this was overcome in the second iron based protocol. Following the successful iron catalyzed chemoenzymatic DKR of sec-alcohols, the iron catalyst was used in the cyclization of α-allenic alcohols and N-protected amines to furnish 2,3-dihydrofurans and 2,3-dihydropyrroles, respectively. The cyclization is proceeding in a diastereoselective manner.The last part of the thesis deals with attempts to further elucidate the mechanism of activation of a known ruthenium racemization catalyst. X-ray absorption spectroscopy using synchrotron radiation was used for this purpose.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.