Least squares methods and applications in robotics

Detta är en avhandling från Linköping : Linköpings universitet

Sammanfattning: This thesis consider the least squares problems and various applications to the inverse kinematic problem in robotics. Two main linear least squares results are given; new backward perturbation bounds and an adaptive algorithm for rank-I regularization for rank deficient linear least squares problems. The inverse kinematic problem, i.e. the problem of finding the joint angles of a robot so that a given position and orientation condition is satisfied, is here formulated as a set of nonlinear equations. A general solver using Gauss-Newton's method is implemented on a fast signal processor. Methods to handle kinematic singularities are discussed, and the regularization algorithm proposed is used. Finally we consider redundant robots, where the number of joints is 7 or more. The extra degrees of freedom are here used for obstacle avoidance, a practical implementation strategy is proposed where the obstacles are assumed to be convex.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.