Model predictive control of resistive wall modes in the reversed-field pinch

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: The reversed-field pinch (RFP) is a magnetic confinement fusion (MCF) device. It exhibits a variety of unstable modes that can be explained by magnetohydrodynamic (MHD) theory. A particular unstable mode that is treated in this work is the resistive wall mode (RWM), which occurs when the shell of the device has finite conductivity. Application of control engineering tools appears to be important for the operation of the RFP. A model-based control approach is pursued to stabilize the RWM. The approach consists of experimental modeling of RWM using a class of system identification techniques. The obtained model is then used as a basis for Mode Predictive Control (MPC) design. The MPC employs the model to build predictions of the system and find a control input that optimizes the predicted behavior of the system. It is shown that the formulation of the MPC allows the user to incorporate several physics relevant phenomena aside from RWMs. The results are encouraging for MPC to be a useful tool for future MCF operation.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.