Green Propellants

Detta är en avhandling från Stockholm : KTH

Sammanfattning: To enable future environmentally friendly access to space by means of solid rocket propulsion a viable replacement to the hazardous ammonium perchlorate oxidizer is needed. Ammonium dinitramide (ADN) is one of few such compounds currently known. Unfortunately compatibility issues with many polymer binder systems and unexplained solid-state behavior have thus far hampered the development of ADN-based propellants.Chapters one, two and three offer a general introduction to the thesis, and into relevant aspects of quantum chemistry and polymer chemistry.Chapter four of this thesis presents extensive quantum chemical and spectroscopic studies that explain much of ADN’s anomalous reactivity, solid-state behavior and thermal stability. Polarization of surface dinitramide anions has been identified as the main reason for the decreased stability of solid ADN, and theoretical models have been developed to explain and predict the solid-state stability of general dinitramide salts. Experimental decomposition characteristics for ADN, such as activation energy and decomposition products, have been explained for different physical conditions. The reactivity of ADN towards many chemical groups is explained by ammonium-mediated conjugate addition reactions. It is predicted that ADN can be stabilized by changing the surface chemistry with additives, for example by using hydrogen bond donors, and by trapping radical intermediates using suitable amine-functionalities.Chapter five presents several conceptual green energetic materials (GEMs), including different pentazolate derivatives, which have been subjected to thorough theoretical studies. One of these, trinitramide (TNA), has been synthesized and characterized by vibrational and nuclear magnetic resonance spectroscopy.Finally, chapter six covers the synthesis of several polymeric materials based on polyoxetanes, which have been tested for compatibility with ADN. Successful formation of polymer matrices based on the ADN-compatible polyglycidyl azide polymer (GAP) has been demonstrated using a novel type of macromolecular curing agent. In light of these results further work towards ADN-propellants is strongly encouraged.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)