Vascular Interactions in Innate Immunity and Immunothrombosis: : Models of Endothelial Protection

Sammanfattning: The phenomenon known as immunothrombosis has garnered increased attention over the last few years. Much work has been done to characterize the cross talk between hemostasis and the innate immune system. This thesis outlines the role of the vascular endothelial cells during immunothrombotic events as regulators of coagulation, platelet-, and leukocyte recruitment.A newly developed method for investigating the interaction between endothelial cells and the blood compartment illustrated the procoagulant and proinflammatory effects elicited by tumor necrosis factor α activated endothelial cells upon exposure to whole blood. The method was utilized in evaluating treatment of endothelial dysfunction and disruption with a heparin conjugate. Damaged or hypoxic endothelial cells, in addition to basement membrane collagen, that were pretreated with the heparin conjugate prior to contact with blood were found to have reduced activation of coagulation, platelet-, and leukocyte recruitment; in contrast to unfractionated heparin, which had no effect on the aforementioned parameters. The treatment was then investigated in the setting of ischemia reperfusion injury during kidney transplantation and the heparin conjugate was found to bind cultured endothelial cells with high avidity under cold storage conditions. Furthermore, it was found to bind to the renal vasculature during static cold storage and was subsequently found to be beneficial with regard to early graft function in an experimental mouse model of syngeneic kidney transplantation. Recipients of kidneys treated with the heparin conjugate had reduced serum creatinine compared to controls 24 hours after transplantation. Lastly, the anticoagulant properties of the heparin conjugate were investigated in comparison to unfractionated heparin. While the conjugate exerted reduced capacity with regard to thrombin inhibition, it rapidly inhibited the binding of platelets to exposed collagen. The conjugate was furthermore found to preferentially locate to sites of endothelial cell activation at early stage during endotoxic shock in mice.In conclusion, this thesis demonstrates that disrupted functioning of the vascular endothelial cells actively contributes to immunothrombosis, and that it is possible to model endothelial cell function using whole blood assays. Furthermore, this thesis presents a treatment that enhances the hemocompatibility of damaged endothelial cells and subsequently improves the early renal function after kidney transplantation.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)