Metal Particles – Hazard or Risk? Elaboration and Implementation of a Research Strategy from a Surface and Corrosion Perspective

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Do metal particles (including particles of pure metals, alloys, metal oxides and compounds) pose a hazard or risk to human health? In the light of this question, this thesis summarizes results from research conducted on metal particles, and describes the elaboration and implementation of an in vitro test methodology to study metal release from particles through corrosion and dissolution processes in synthetic biological media relevant for human exposure through inhalation/ingestion and dermal contact.Bioaccessible metals are defined as the pool of released metals from particles that potentially could be made available for absorption by humans or other organisms. Studies of bioaccessible metals from different metal particles within this thesis have shown that the metal release process is influenced by material properties, particle specific properties, size distribution, surface area and morphology, as well as the chemistry of synthetic biological test media simulating various human exposure scenarios. The presence of metal particles in proximity to humans and the fact that metals can be released from particles to a varying extent is the hazard referred to in the title.The bioavailable metal fraction of the released metals (the fraction available for uptake/absorption by humans through different exposure routes) is usually significantly smaller than the bioaccessible pool of released metals, and is largely related to the chemical form and state of oxidation of the released metals. Chemical speciation measurements of released chromium for instance revealed chromium to be complexed to its non-available form in simulated lung fluids. Such measurements provide an indirect measure of the potential risk for adverse health effects, when performed at relevant experimental conditions.A more direct way to assess risks is to conduct toxicological in-vitro testing of metal particles, for instance on lung cell cultures relevant for human inhalation. Induced toxicity of metal particles on lung cells includes both the effect of the particles themselves and of the released metal fraction (including bioaccessible and bioavailable metals), the latter shown to be less predominant. The toxic response was clearly influenced by various experimental conditions such as sonication treatment of particles and the presence of serum proteins.Thorough characterization of metal particles assessing parameters including chemical surface composition, degree of agglomeration in solution, size distribution, surface area and morphology was performed and discussed in relation to generated results of bioaccessibility, bioavailability and induced toxicity. One important conclusion was that neither the surface composition nor the bulk composition can be used to assess the extent of metals released from chromium-based alloy particles. These findings emphasize that information on physical-chemical properties and surface characteristics of particles is essential for an in-depth understanding of metal release processes and for further use and interpretation of bioaccessibility data to assess hazard and reduce any risks induced by human exposure to metal particles.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)