High-­resolution mapping of soil organic carbon storage and soil properties in Siberian periglacial terrain

Detta är en avhandling från Stockholm : Stockholm University

Sammanfattning: In the past years considerable attention has been given to soil organic carbon (SOC) stored in permafrost-affected soils in periglacial terrain. Studies have shown that these soils store around half the global SOC pool, making them a key component of the global carbon cycle. Much of the SOC presently stored in these soils has accumulated since the Pleistocene and is protected from decomposition and erosion by low temperatures close to or below the freezing point. This makes it vulnerable to remobilization under a warming climate. This thesis provides new data on SOC storage in three study areas in Siberian periglacial terrain. A high-resolution land cover classification (LCC) for each study area is used to perform detailed vertical and spatial partitioning of SOC. The results show that the vast majority (>86%) of the ecosystem carbon is stored in the top meter of soil. Low relative storage of carbon in plant phytomass indicates limited uptake potential by vegetation and emphasises the vulnerability of the SOC pool to geomorphic changes. Peat formation as well as cryoturbation are identified as the two main pedogenic processes leading to accumulation of SOC. Presence or absence of ice-rich Yedoma deposits determine soil formation and SOC storage at landscape scale. At local scale, periglacial landforms dominate SOC allocation in the tundra, while forest ecosystem dynamics and catenary position control SOC storage in the taiga. A large diversity of soil types is found in these environments and soil properties within pedons can be highly variable with depth. High-resolution satellite imagery allows upscaling of the SOC storage at unprecedented detail, but replication of soil pedons is a limiting factor for mapping of SOC in remote periglacial regions. Future research must look beyond traditional LCC approaches and investigate additional data-sources such as digital elevation models. The concept of state factors of soil formation is advocated as a framework to investigate present day and future SOC allocation in periglacial terrain.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)