Photospheric emission from structured, relativistic jets : applications to gamma-ray burst spectra and polarization

Sammanfattning: The radiative mechanism responsible for the prompt gamma-ray burst (GRB) emission remains elusive. For the last decade, optically thin synchrotron emission from shocks internal to the GRB jet appeared to be the most plausible explanation. However, the synchrotron interpretation is incompatible with a significant fraction of GRB observations, highlighting the need for new ideas. In this thesis, it is shown that the narrow, dominating component of the prompt emission from the bright GRB090902B is initially consistent only with emission released at the optically thick jet photosphere. However, this emission component then broadens in time into a more typical GRB spectrum, which calls for an explanation. In this thesis, a previously unconsidered way of broadening the spectrum of photospheric emission, based on considerations of the lateral jet structure, is presented and explored. Expressions for the spectral features, as well as polarization properties, of the photospheric emission observed from structured, relativistic jets are derived analytically under simplifying assumptions on the radiative transfer close to the photosphere. The full, polarized radiative transfer is solved through Monte Carlo simulations, using a code which has been constructed for this unique purpose. It is shown that the typical observed GRB spectrum can be obtained from the photosphere, without the need for additional, commonly assumed, physical processes (e.g. energy dissipation, particle acceleration, or additional radiative processes). Furthermore, contrary to common expectations, it is found that the observed photospheric emission can be highly linearly polarized (up to $\sim 40 \, \%$). In particular, it is shown that a shift of $\pi/2$ of the angle of polarization is the only shift allowed by the proposed model, consistent with the only measurement preformed to date. A number of ways to test the theory is proposed, mainly involving simultaneous spectral and polarization measurements. The simplest measurement, which tests not only the proposed theory but also common assumptions on the jet structure, involves only two consecutive measurements of the angle of polarization during the prompt emission.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)