Power Consumption and Joint Signal Processing in Fiber-Optical Communication

Sammanfattning: The power consumption of coherent fiber-optical communication systems is becoming increasingly important, for both environmental and economic reasons. The data traffic on the Internet is increasing at a faster pace than that at which optical network equipment is becoming more energy efficient, which means that the overall power consumption of the Internet is increasing. In addition, wasted energy leads to higher costs for network operators, through increased electricity expenses but also because the heat generated in the equipment limits how closely it can be packed. This thesis includes both power consumption modelling and trade-off studies, as well as investigations of novel schemes for joint signal processing that may lead to an improved energy efficiency and increased performance in future systems. The power consumption modelling part includes a model of optical amplifier power consumption, which is connected to a performance model based on the Gaussian-noise model. Using these models, the trade-offs between amplifier power consumption and the choice of modulation format and forward-error-correction (FEC) scheme can be analyzed. Furthermore, the power consumption for a coherent link with minimal digital signal processing (DSP) is studied as well. In the second part we investigate joint signal processing for phase-coherent superchannel systems based on optical frequency combs or multicore fiber. We find that the phase-coherence of optical frequency comb lines enables joint carrier recovery, which can increase performance and reduce the power consumption of the digital signal processing. The possible power consumption savings are quantified for a blind phase search method for phase tracking. Finally, we quantify the performance of joint carrier recovery for wavelength division multiplexed multicore fiber transmission in presence of nonlinear interference and inter-core skew.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)