The influence of tool steel microstructure on galling

Detta är en avhandling från Karlstad : Karlstads universitet

Sammanfattning: In sheet metal forming (SMF) of materials such as stainless steels there is a major problem with transfer and accumulation of sheet material to the metal forming tool surface. The problem is known as galling; a sort of severe adhesive wear, which results in severe scratching of produced parts. In this thesis, the overall aim was to gain knowledge of the influence of tool steel microstructure on galling initiation under sliding conditions. It was discovered that material transfer and tool steel damage caused by sheet material flow creating wear-induced galling initiation sites occurred in the early stage of galling. The galling resistance was higher for tool steels with higher matrix hardness due to better resistance to tool steel damage. Initial friction and critical contact pressure to galling was influenced by the strength of the sheet material. Material transfer happened at low pressures and the friction value was high in a case of sheet materials with lower proof strength, possibly due to the sheet contact against the tool steel matrix resulting in high adhesion and quicker tool damage. It was demonstrated that, in addition to hardness of the tool steel matrix and sheet material proof strength, tool steel microstructural features like size, shape, distribution and height of hard phases are important parameters influencing galling. Tool steels comprising homogeneously distributed, small and high hard phases better prevented the contact between sheet material and the tool steel matrix. Thus, a metal to metal contact with high friction was more efficiently avoided, which resulted in better tool performance. 

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)