Asymptotic distribution of zeros of a certain class of hypergeometric polynomials

Detta är en avhandling från Stockholm : Department of Mathematics

Sammanfattning: The thesis consists of two papers, both treating hypergeometric polynomials, and a short introduction. The main results are as follows.In the first paper,we study the asymptotic zero distribution of a family of hypergeometric polynomials in one complex variable as their degree goes to infinity,using the associated differential equations that hypergeometric polynomials satisfy.   We describe in particular the curve complex on which the zeros cluster, as level curves associated to integrals on an algebraic curve derived from the equation.   The new result is first of all that we are able to formulate results on the location of zeros of generalized hypergeometric polynomials in greater generality than before (earlier results are mainly concerned with the Gauss hypergeometric case.) Secondly, we are able to formulate a precise conjucture giving the asymptotic behaviour of zeros in the generalized case of our polynomials, which covers previous results.In the second paper we partly prove one of the  conjectures in the first paper by using Euler integral representation of the Gauss hypergeometric functions together with the Saddle point method.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.