Life and death of human B cells in health and disease

Sammanfattning: B cells provide one of the key mechanisms of immunological memory, which is theproduction of neutralising antibodies. How B cells respond to infections and vaccinationgives clues to how the development of the immunological memory is facilitated, and canthus lead to a deeper understanding of why the immune system sometimesmalfunctions. This thesis focuses on the human B cell responses in three differentsettings: Acute viral infection, mechanisms involved in germinal centre responses, andvaccination upon interrupted B cell depletion therapy in patients with multiple sclerosis(MS). We have found that during acute Puumala-orthohantavirus (PUUV) infection, Bcells activate on a large scale and derive a phenotype similar to previous observations inautoimmune diseases and chronic infections. Patients with PUUV infection also haddecreased expression of the complement regulatory protein Decay-Accelerating Factor(DAF) at an early stage in the disease. Here, we hypothesised that this might be a resultof a robust B cell response, and therefore we continued to assess B cells at the peripheralsites of their maturation. We found that B cells downregulated the complementinhibitory protein during the germinal centre reaction, which also primed the cells forphagocytosis. This finding shed light to the mechanisms that control B cell homeostasis.Finally, we assessed the B cell responses towards vaccination in patients with MS afterinterruption of their B cell depletion therapy. Here we showed that the patients yieldedexpansion of vaccination-specific memory B cells. However, these memory B cells didnot comprise expansion of DAFlo cells, in contrast to the non-MS control individuals.We speculated that the B cell depletion might have an impact on the formation of B cellmemory after interrupted treatment. Taken together, this thesis contributes to theoverall understanding of the life cycle of B cells, in the context of infection, vaccination,and homeostasis.