Experimental Measurement of Lateral Force in a Submerged Single Heaving Buoy Wave Energy Converter

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: The search for new solutions for the generation of energy is becoming more and more important for our future. Big arguments and disagreements on e.g. the questions of gas transport or the dependence on energy supplied by other countries raise demands on the development of new forms of alternative energy resources. Wave power is one of the main sources of renewable energy due to the high power density stored in ocean waves.Nevertheless, the dynamic forces of waves are so large that serious questions popped up on how to design a system which could work even in an unfavourable wave climate or could at least retain working capabilities after big storms without significant damages.This thesis studies the reliability of the mechanical parts of a linear direct driven permanent magnet generator. The results of offshore experiment where strain gauge sensors instrumented on the capsule and the inner framework structure are presented. Stress estimation analyses using strain gauges are carried out. A method for measuring forces and moments in the mechanical structure of the WEC is developed.Evaluation of the lateral force acting on the outer structure is a key factor for the design and construction of the WEC. A method for the measurement of the lateral force acting on the capsule has been developed.A study of the inclination angle between the Wave Energy Converter and the floating buoy has been carried out.The aim of this work is to contribute to the development of wave energy conversion system, and especially to the estimation of structural loads which are important for the survivability of the system under hard sea states.This work is a step that may influence future design of wave energy devices in terms of material aspect, survivability in a hard wave climate and cost-effective renewable energies.