Evaluation of Errors and Limitations in Ultrasound Imaging Systems

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: There are binding regulations requiring safety and efficacy aspects of medical devices. The requirements ask for documentation that the devices are safe and effective for their intended use, i.e. if a device has a measuring function it must be correct. In addition to this there are demands for quality systems describing development, manufacturing, labelling, and manufacturing of a device. The requirements are established to guarantee that non-defective medical devices are used in the routine clinical practice. The fast rates in which the imaging modalities have evolved during the last decades have resulted in numerous new diagnostic tools, such as velocity and deformation imaging in ultrasound imaging. However, it seems as if the development of evaluation methods and test routines has not been able to keep up the same pace. Two of the studies in this thesis, Study I and IV, showed that computed tomography-based and ultrasound based volume measurements can yield very disparate measurements, and that tissue Doppler imaging-based ultrasound measurements can be unreliable.Furthermore, the new ultrasound modalities impose higher demands on the ultrasound transducers. Transducers are known to be fragile, but defective transducers were less of a problem earlier when the ultrasound systems to a lesser extent were used for measurements. The two other studies, Study II and III, showed that serious transducer errors are very common, and that annual testing of the transducers is not sufficient to guarantee an error free function.The studies in the thesis indicate that the system with Notified Bodies, in accordance with the EU’s Medical Device Directive, checking the function and manufacturing of medical devices does not work entirely satisfactory. They also show that the evaluation of new methods have led to the undesirable situation, where new measuring tools, such as volume rendering from imaging systems, and tissue Doppler-based velocity and deformation imaging in echocardiography are available for clinicians without proven knowledge about their accuracy.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)